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ELEMENT OF THE HIJMANS-DE BOER APPROXIMATION 
TO ORDER-DISORDER THEORY 

I.      INTRODUCTION 

In  recent years the theory pertaining to gas adsorption  in localized monolayers  in the 
presence of lateral interactions has been put on a systematic basis, using order-disorder the- 

1-3 4 ory. For this purpose the Hijmans-de Boer formulation    of order-disorder phenomena has 

been extremely useful.    While mathematically not as elegant as some other methods described 
in the literature (for a general survey see Refs. 5 and 6),   it possesses the definite advantage of 
being relatively simple and amenable to pictorial representation.    Unfortunately,   in the original 

4 1-3 publications    as well as in the later applications        sufficient space was not available for a full 
exposition of the Hijmans-de Boer methodology.    Therefore,   it does not seem inappropriate to 

deal in greater detail with the fundamental structure of the Hijmans-de Boer theory;  particularly 
since the basic concepts can be applied to other areas (e.g.,   ferromagnetism,   binary alloys) 
without change.   For the application of the theory to adsorption phenomena, the reader is directed 

to the original articles and to a recent review. 
For gas adsorption processes analyzed with this method,   one deals with models in which the 

surface of a solid is represented by a regular array of adsorption sites,   each of which is either 
full (occupied) or empty (unoccupied).    Assuming that the various sites are energetically equiva- 
lent,   and that each adsorbate molecule is held to a given site,   one wishes to determine the sur- 
face coverage and the thermodynamic properties of the adlayer as a function of the pressure of 

the gas in equilibrium with it.    In the solution of this problem one must allow for the possibility 

of lateral interaction among the adsorbed species. 
Clearly,   any theory describing all possible lateral interactions on a large lattice would be 

of enormous complexity.    The approximation scheme of Hijmans and de Boer provides a very 

systematic method for simplification of this problem.    The actual lattice is replaced with sets 
of representative assemblies,   or arrays,   in which each constituent member consists of only a 

limited number of sites.    The number of microvariables required in the physical description of 
such assemblies is then rather small,   and it is possible to determine explicitly the thermody- 
namic properties of these assemblies.    By increasing the complexity of the clusters in the ar- 
rays,  the properties of the lattice can be approximated to any desired degree.    Much of the sub- 
sequent discussion will therefore deal with the problem of decomposing any lattice into repre- 
sentative assemblies;   once this has been accomplished, a specification of both the thermodynamic 

properties and the isotherms is relatively simple. 

We now begin a consideration of the various steps involved in a general formulation of the 

theory.    For purposes of illustration,  we shall use the specific example of the hexagonal lattice 

depicted in Fig. 1. 
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Fig. I.   Two-dimensional hexagonal lattice. 
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TABLE  I 

VALUES FOR x(m) AND FOR a(')(m) FOR HEXAGONAL LATTICE 

,w = i 

x*>. = 3 

«W. = 2 

«». = 3 

(0(m) 
a m = 1 2 3 4 

1= 1 1 2 3 4 

2 0 1 3 5 

3 0 0 1 2 

4 0 0 0 1 

y values 

m xM (m) 
7o 

yH (m) 
c 

(m) 
yd 

a l 6 -5 1 1 

b 3 3 -3 0 

c 2 2 -4 

d 3 3 



II. DECOMPOSITION OF LATTICE INTO SUBFIGURES 

The first step in the general Hijmans-de Boer procedure is to decompose the lattice into 

subfigures.    These will be distinguished by the use of superscripts (a),  (b), . . . (n).  where (n) 

is reserved for the largest subfigure to be considered,  which is termed the basic figure.    The 

hexagonal lattice and some of the simpler subfigures designated by the running index (m) are 

shown in Figs. 1 and 2. 
The number of subfigures of type (m) contained in any lattice is designated as x       L,   where 

L is the total number of lattice points.    The procedure for obtaining numerical values for the 

x        is similar to that used in determining the number of atoms in a unit cell of a crystal.    For 
example,   in Fig. 1,   x       =3 because every bond comprises two points, and every point represents 
tin- intersection of six lines.    In finding x     ,   it must be noted that every lattice point is common 

to twelve rhombi.    A listing of several x        values is provided in Table I. 
The subfigures specified by (a) and (b) are frequently termed points and bonds,   respectively; 

those corresponding to x = c,   d,   etc.,   are designated by their geometric shape. 
Every subfigure except the point (a) contains a certain number of simpler subfigures;  the 

number of subfigures of type (/) contained in the subfigure (m) will be designated by a For 
(a)(c) example,  a = 3,   since each triangle contains 3 points.    Table I contains a listing of several 

a values for the hexagonal lattice.    Concerning a and a ,  one must note that the 
rhombus is considered as consisting of two triangles,   but of five rather than six Ionds;   that is, 
the base line common to the two triangles is counted only once.    For purposes of this report we 
confine the theoretical treatment to the case where the rhombus is chosen as the basic figure. 

III. OCCUPATION STATES OF VARIOUS SUBFIGURES 

In the second step of the procedure we consider the various possible occupation states of the 

subfigures;   i.e.,   we specify not only the number of occupied points in a given (m) figure, but also 

the manner in which these are distributed among the sites making up the (m) figure.    Only non- 

equivalent configurations need be distinguished;  these represent arrangements of the occupied 
sites that cannot be duplicated by carrying out symmetry operations on the subfigure as a whole. 

For example,  the configurations shown in Fig. 3(a) are equivalent,   since by the process of rota- 

tion of the triangles,   both the occupied and the unoccupied sites can be brought into coincidence. 
On the other hand,  the configurations shown in Fig. 3(b) are nonequivalent,   since it is not possible 
to superpose the  rhombi  in  such a way that all the occupied and unoccupied sites  match.    To 

(0) 

<t>; 

Fig. 3.    Examples of equivalent and nonequivalent occupation states. 
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distinguish the various occupation states,  we introduce the integer j,  which denotes the number 

of sites occupied in a given subfigure.    This is followed by the integer £,   if needed,  to distin- 

guish between various possible arrangements of the j occupied sites among the possible positions 
in the subfigure.    Finally,   the integer  r  is introduced to distinguish between configurations that 

exhibit the same general relative pattern of the occupied sites but which involve nonequivalent 

sites.    A listing of the various possible nonequivalent occupation states for subfigures of the 
hexagonal lattice is given in Fig. 4.    Inspection of the rhombus shows that for j = 2 it is clearly 

necessary to distinguish the cases where the occupied points are adjacent U = 1),  or separated 

by the long diagonal (^ = 2).    When £ = 1,  one must specify whether the occupied sites form the 

short diagonal (r = 1) or one of the edges (r = 2).    The above-mentioned indices are used as sub- 

scripts to the occupation probability,  denoted by p. 
With each occupation state,  one associates a distribution number or occupation probability 

p./11   which indicates the fraction of all (m) figures in the (m)-figure assembly that are in the 
J^r (d) configuration j£r.    A comma between subscripts [such as in p. 2] indicates that the integer £ is 

missing and that the two integers written out are associated with j  and  r,   respectively.    The 

absence of such a comma [as in P32 1 shows that the integer r  is missing and that the subscripts 
are to be identified with j and $. 

Whenever a given occupation state can be specified in several equivalent configurations,  the 

multiplicity factor \.       is introduced;  for example,  X2     = 3,  because the bond may lie along 

any one of the three sides of the triangle. 

IV.   DECOMPOSITION OF LATTICE IN FIGURE ASSEMBLIES 

The third step requires the decomposition of the lattice into figure assemblies;  this is one 

of the cardinal points in the Hijmans-de Boer method.    For,   if the lattice decomposition is prop- 
erly achieved,  then,  to a good degree of approximation,   the statistical properties of the simpler 

figures should reflect those of the lattice. 
To illustrate the proper method of procedure,   we regard the basic array as the (n)  figures; 

from the calculations set forth in Sec. Ill we can compute the number of members x      in the (n)- 
figure assembly.    Except in the trivial case (n) = (a),   every basic figure contains further sub- 
figures,   designated by (m),   (f), . . ., (a).    Thus,   in setting up the (n)-figure assembly,   we auto- 
matically include the a(m)(n)x(n)L figures of type (m),  the a(i)(n)x(n)L figures of type (*), .... 
and the a x     L points contained in the x     L figures of type (n).    Let these various quantities 

be listed at the very left in the equations below.    Proceeding to the first relation,  we notice that 

the actual number of (m) figures in the lattice is given by x*     L,  whereas the number included 

in the (n)-figure assembly is a x     L.   Any discrepancy between these two counts must be 

rectified by setting up an (m)-figure assembly of y *m,L members,  where y*m' satisfies the 

relation (1).    Note that y*       may be positive,   negative,   or zero,  according as a*    "   'x*    L 
n (m) 

represents an undercount,  overcount,  or the proper count relative to the correct value x      L. 
However,   while only the y *    'L members are formally listed in the (m)-figure assembly,   a dif- 

ferent number,  a*m'*n'x*n'L,  are also implicitly present — these having been automatically in- 
cluded in the process of setting up the basic (n)-figure array.    Thus,  the totality of implicitly 
and explicitly occurring units in a given figure assembly is always positive. 

As soon as the collection consisting of y        L units of type (m) was set up,   a total of 
a(l)(m)y(m)L units Qf type {i)j  a^)(m)y (m)L

n
un.ts of type (R) and Qf a<a)(m)y(m)L points 



was automatically included with this set.   Let these be listed as second terms in the equations; 

we then repeat the preceding argument with reference to Eq. (2):   The correct count of (I) figures 

in the lattice is x* 'L,.   In general, we must now set up an (i)-figure assembly by y* 'L members, 

such that the totality of (I) figures - including those contained in the (n)- and (m)-figure assem- 

blies -yields the correct quantity,  that is,  x( *L.   Proceeding similarly, we can work our way 

down to the last equation involving the point figure.    This type of argument leads to the set of 

relations: 

a(m)(nMn)+yf(m)=x(m) (j) 

a(i)(n)x(n) + a(/)(m)y(m)+y(/) = x(i) (2) 

a(k)(n)x(n) + a(k)(m)   (m)       (kMl)  (t) +    CM =   (k) . 
^n an        *n 

a(a)(n)x(n) + a(a)(m)   (m) + a<a)(l)   (!) + a<a)(k)   (k) +      +    (a) = x<a) (4) 
Jn ^n •'n n 

Beginning with Eq. (1),   since a        n x      and x m   are known,  we can determine y m ,   use it in 

Eq. (2) to find y     ,  and proceed down the line to y      . 

By means of the above scheme we have thus succeeded in representing the lattice by figure 

assemblies consisting of:   x     L members of type (n),   y       L members of type (m), ....   and 

y^a)L points,  with a grand total of     2     Ly,im> members fwe define y^n) = x(n)). 
m=a 

In order to make certain that no type of subfigure has been missed nor that any extraneous 

type has been introduced,  Ilijmans and de Boer established the following procedure:   Two basic 

(n) figures are overlapped until all possible first generation overlap figures are obtained.    All 

possible pairs of these are overlapped until all possible second generation overlap subfigures 

are specified.    The process continued until the overlap possibilities are completely exhausted; 

i.e.,  until the final generation of overlap figures contains only points.    In conjunction with this 

process,   one defines essential overlap figures as those which do not occur in subsequent genera- 

tions.    It can be proved   that the listing of essential overlap figures exhausts the set which is 

required for representation of the lattice as a series of figure assemblies. 

V.    STATISTICAL PROPERTIES OF FIGURE ASSEMBLIES 

Having decomposed the lattice into representative figure assemblies,  we now turn to a sta- 

tistical treatment,   regarding the constituent members in each assembly as completely independ- 

ent of one another.    One begins with a consideration of the number of ways in which all possible 

occupation states j£r,  consistent with the (m) figure,  can be distributed among the y        mem- 

bers of the (m)-figure assembly.    The standard combinatorial expression for the number of pos- 

sible complexions is given by 

n ,   (m)       (m),       [yn     L^!  ,c, 
fi frn     :  Pi*r 1 =  T(ml      • (5) 

n<< m) v(m)LH*j4r 

Ur 



The quantity p..   y       L represents the number of (m) figures in the designated configuration. 
A product of this type is taken over the possible configurations,   each factorial term being raised 

to the power of the corresponding multiplicity.    Since L is large,  one may employ Stirlings' 

approximation to obtain 
Jm), (m). (m) 

n 3§LI  .   (6) ß [y 
(m) 

ry<m)Lfr- /_ r «.^-^^ 

The quotient [y       L/e] is independent of the configuration under study;  therefore,  this 
quantity may be written out as a factor,  ahead of the product sign in the denominator of Eq. (6). 
This factor has the form 

[yim)L/e) 

(m)   <m)| „(m) 

j{r V'PjSr R 
in view of the normalization conditions (see Sec. VI),  this factor reduces to the same form as 

the numerator of Eq. (6).    Thus,  we obtain 

(m)   (m)   (m), 

a fy(m) p(m)] = 
^YTP« 

n rpi™»] *r jcr n 

& 

-1 

(7) 

The same line of reasoning may be pursued for the remaining types of figure assemblies.    In 
each case one arrives at Eq.(7) only the index (m) being changed;  the total number of complex- 
ions is therefore given by 

(m)     (m), w. n oiyr.p™1 (8) 

Thus far,   a statistical description has been furnished for the independent members in the 

various figure assemblies.    A postulate is now needed,   showing how the properties of the lattice 

may be deduced from those of the figure assemblies.    This postulate has been stated in a variety 
4 

of ways.     Each formulation is equivalent to the assumption that the results deduced from Eqs. (7) 
and (8) are also applicable to the lattice proper.    This obvious oversimplification enormously 

reduces the mathematical complexity of the problem under study. 
As is well known,  the combinatorial factor  W  is related to the entropy of the system under 

consideration:   S = kinW.    From Eqs. (7) and (8),   we see that this leads to the relation 

S    = -kL c 
m=a 

(m)   v      (m)   (mh (m) (9) 

Note that this represents only the configurational contribution to the total entropy; the thermal 

contribution must be specified separately.    We adjoin to this expression the energy contribution, 
exclusive of the thermal contribution,  as given by 

E    = L c 
(m)   v   . (m)   (m)^(m) 

34r 
%j*r 

Kj4r cj*r 
(10) 



In this equation,   e.,      is the energy associated with one (m) figure in the configuration j£r.    The 

energy due to all units of the (m)-figure assembly in this configuration is X.m p.m e ,m .    This 

quantity is summed,  first over all possible configurations consistent with the (m) figures,   and 

then over all figure assemblies,  to give the total energy. 

VI.   CONCEPT OF OCCUPIED SUBFIGURE 

In principle,  one could combine Eqs. (9) and (10) into an expression for the free energy and 

minimize this relation to characterize the equilibrium conditions.    The principal difficulty in 

this procedure is that both S   and E   are functions of the various p..    ;  not all of these proba- 
bilities are linearly independent,   however.    Accordingly,   it is necessary to decide on a set of 

independent variables with respect to which the minimization can be carried out.    One systematic 

procedure for accomplishing this purpose is to introduce the concept of the occupied subfigure (s) 

belonging to the subfigure (m).    Suppose k out of m points are occupied in the subfigure of type 

(m).    Then the occupied subfigure refers to the geometric patterns of the k occupied sites ab- 

stracted from all the sites comprising the (m) figure.    The nature of this concept will be clari- 
fied in conjunction with the discussion concerning Fig. 5,   as given later in this section.    Let us 

temporarily continue with the determination of mathematical properties. 

The distribution number for the occupied subfigure will be represented by the symbol q*      . 

To relate the q,        with the p       ,   one introduces the factor c.       ..  ,   which specifies in how many 
ways the occupied subfigure in the arrangement tajs can be included among the j occupied sites 

of the (m)-figures in the configuration j£r.    Methods for determining this particular coefficient 

will be given later.   For the present, it is to be noted that the product c *™*       • X^'pi™^"1^ KT/s.j^r       j^r     j<r 
gives the number of occupied subfigures in the arrangement ta]s that arise from the members of 
the (m)-figure assembly in the occupation state j£r. Upon summing over this last set of indices, 
one finds the total number of occupied subfigures in the configuration krjs, obtained from the de- 

composition of the lattice.    On the other hand,  this quantity is also given by A, m q, m x m L,   as 
(m) 1CT?S    ^S 

follows from the definition of q'      .    On equating these expressions one obtains 

„ (m) . (m)   (m)       v      (m)     % (m)   (m) ,  ,.  , . ,. A. Xta)s «kr, =- \Vs «to»   =   L   cto,s;UrV Pj*r        ■       m = a< • • • • "      <al1 k>      ■ <«) 

For the moment let us ignore the expression to the left of the identity sign. 

The utility of Eq. (11) emerges upon examination of the conditions which must be satisfied 
by the q,       .    The various p.t      relate to occupied states for members in the figure assemblies, 

whereas the q^s   apply to occupied subfigures abstracted from these.    The q,^   therefore are 
independent of any unoccupied sites required to make up the m-figure.    We now show that the 
q,V?   apply equally well when the occupied subfigures are considered as part of the lattice. 

The following conditions are then imposed on the q:   The value of a given q.        should not 
depend on the particular set of sites which is occupied,   so long as  the relative position of all 

occupied sites remains the same.    As an example,   refer to Fig. 5.    Clearly,  the occupied sub- 
figure EB retains its identity in the lattice whether it be regarded as an edge of the rhombus 

EBCD or as .a short diagonal of the rhombus ABDE.    On the other hand,   if these particular 

rhombi were considered as members of a figure assembly,  they would be assigned different 

configurations (i.e.,   211 and 212) and different distribution numbers.    Consequently,   it is 
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Fig. 5.   Occupied subfigure in two- 
dimensional hexagonal lattice. 

necessary to impose the condition q2ii 
= q212*    Tnis tvPe °* argument must be generally appli- 

cable and leads immediately to one condition to be met by the q-numbers: 

(m)        (m) _ _    (m) .     . 
%1    = %2   -•••"% • (12) 

Again,   referring to Fig. 5,  we observe that the line EB does not form part of any particular 

identifiable subfigure.    For instance,   line EB might be considered a fully occupied (b) figure, 

an edge of the triangle ABE or BDE,   a short diagonal or edge of the rhombi previously mentioned, 

or it could be regarded as part of any higher subfigure.    Once again,   these various possibilities 

would be recognized as distinct in the figure assemblies and would be assigned separate occupa- 

tion states and distribution numbers.    However,   since no such distinction is possible in the lat- 

tice,   one must require that q21   = q?5   = q24    = • • • .   or»   more generally: 

(n) _    (m) _ .     . 
^kr,    -%     -••-^kr,        ' {13) 

The smallest subfigure involved in Eq. (13) is that in which all sites are occupied;  the largest is 

the basic (n)  figure. 

Equations of the form (12) and (13) are termed consistency requirements.    On account of 

Eq.(ll),   they produce interrelations between the various p.. 

As a consequence of the consistency requirements,   it is permissible to drop the superscript 

and the third subscript from the q symbol.    Further,   one must note the very important point 

that there exist only as many q numbers as there are occupied subfigures which can be distin- 

guished in the lattice.    The various q.    are therefore automatically independent. 
KTJ 

At this point it is convenient to introduce the definition 

c«»»r = i (all i) (14) 

with which we obtain 

n    _   Y      (m)   (m) _ . ,,_. 

The relation on the left follows directly from use of the definition (14) in Eq. (11),   whereas the 

equality on the right is a consequence of the definitions involving \.f      and p..    ,   respectively. 

The statement q    =1 thus is a convenient shorthand relation for the normalization conditions 
(m)   characterizing the p..    .    The quantity q    cannot be considered on the same footing as q.    (k > 0), 

since the state k = 0 represents a figure with no occupied sites.    Clearly,   no such occupied sub- 

figure can be constructed,   and so q    is not a proper member of the set of distribution numbers q. 
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We now take advantage of the previously stated linear independence of the various q.    .   For, 
loj 

if we succeed in inverting Eq. (11) as 

(m)   (m)        y   ~(m)        (m) . , „   .. .,,. 
Xjir Pj^r    =    I   Sr;kT,s V qkr,       ■       m = a'b n      (al1 J> (l6) 

krjs 

then it is possible to replace the variables p.t     by q,     and ultimately,  to construct an expres- j$r KTJ 
sion for free energy of the system solely in terms of the linearly independent q,    .    The free 

KTJ 
energy can then be properly minimized. 

Before Eq. (16) can be used,  we need to determine the elements C... Fortunately,  these 

quantities are very simply related to the elements appearing in Eq. (11);   as will be shown, the two 

sets differ at most in sign.    Since c,     t .f    can be readily obtained by inspection of the figure 

assemblies,  the determination of the coefficients in Eq. (16) represents no problem.    We will 

designate the matrices with elements C.™..      and cwj. £r 
bv T and T,   respectively. 

VII.    DETERMINATION OF C^.^;  DIGRESSION OF PROOF 

THAT MATRIX ELEMENTS OF T AND r DIFFER AT MOST IN SIGN 

At this point we show how the matrices T  and  T may be constructed.    The general method 

of finding the elements c,       .t   follows the scheme depicted in Fig. 6 in which (m) = (d),  and 

k = 2,  j = 2, 3,   or 4.    For example,   Co^o-^l = 2 because the line segment [here the occupied sub- 

figure (b)] which forms an edge of the rhombus in the occupation state 212 can be laid along ei- 

ther edge of the (d) figure in the occupied state 31.    It cannot be superposed with the short diag- 

onal of the (d) figure in the configuration 31;   for,   such an operation is possible only when the 

occupied subfigure (b) is in the configuration 211. 

Values of the matrix elements for several subfigures of T  together with the proper multi- 

plicities are entered in Table II.    Attention is directed to the following points: 

(a) All elements of r  are nonnegative. 

(b) All elements below the diagonal vanish identically, since it is impossible 
to superpose an occupied subfigure on a subfigure with a smaller number 
of sites. 

(c) All diagonal elements are unity,   since a given occupied subfigure can be 
superposed on itself in only one way. 

(d) The top row elements are unity because of the definition (14). 

(e) The elements in the last column coincide with the multiplicities;   i.e.,   when 
an occupied subfigure (s) is matched with an (m)  figure,   all of whose sites 
are also occupied,  then all possible ways of including the k points of the 
(s) figure in the j points of the (m) figure must be included.    This latter 
type of process is exactly analogous to that used in determining the 
multiplicities. 

We turn now to the proof of the fact that the matrix elements of r  and  T differ at most in 

sign.    This proof rests on the following important relation which holds only for fixed k: 

>i) 
"k77s;j£ 

ns 
2  eÄfr-i'-ASCj-k)! (k fbCed) (17) 

To verify Eq.(17),  we observe that a variation in the indices r\  and s corresponds to a change 

in the relative position of the  k points comprising the (s) figure.    A nonzero contribution to the 

! J 



TABLE II 

T OR T MATRICES FOR TRIANGULAR LATTICE 
(The minus sign obtains for elements of T matrix) 

a A.<°> 
1 

l     i 

\(0) kX 0      1 

1 

1 

0 

l 

0   ±1 

0      1 

b A« 
1 

1 2      1 

\(b> 
\. i 
kX 0 1       2 

1 0 0 ±1       1 

2 l 0 1    ±2 

1 2 0 0      1 

c 
1 

1 3 3 1 

\w 
\ i 
kX 0 1 2 3 

1 0 1 ±1 1 ±1 

3 i 0 1 -.2 3 

3 2 0 0 1 ±3 

1 3 0 0 0 1 

d 4d) 
i*r 

1 2 2 1 4 1 2 2 1 

1<r|s 
0 1,1 1,2 211 212 22 31 32 4 

1 0 1 ±1 ±1 1 1 1 ±1 ±1 1 
2 ifi 0 1 0 ±2 ±1 0 2 1 ±2 
2 1,2 0 0 1 0 ±1 *2 1 2 ±2 

1 211 0 0 0 1 0 0 ±1 0 1 
4 212 0 0 0 0 1 0 ±2 ±2 4 
1 22 0 0 0 0 0 1 0 ±1 1 

2 31 0 0 0 0 0 0 1 0 ±2 
2 32 0 0 0 0 0 0 0 1 ±2 
1 4 0 0 0 0 0 0 0 0 1 
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sum over TJ   and  s   is obtained only if,   on a particular arrangement,   all units of the (s)  figure 

coincide with occupied sites of the (m) figure.    Otherwise,  the corresponding c/™        vanishes, 

as follows immediately from the definition of this quantity.    Thus,  in carrying out the summa- 

tion on the left of (17),  we exhaust all possible distributions of k particles among j locations; 

the number of ways in which this can be done is shown by the combinatorial expression on the 

right. 

It is now asserted that 

c(m)      ^^(j-k)    (m) 
k»is;j{r krjs;3£r 

If Eq. (18) is correct, then all elements of the product matrix would have to satisfy the re- 

ement 

I   ("1} cltt.knBCkn8.j«r " Wrt (19) 

krjs 

where the symbols on the right are the conventional Kronecker deltas.    The quantity on the left 

is the element (If t,   j£r) of the matrix TV. 

Thus,   if we can establish Eq. (19),  the assertion (18) is proved.    We show that Eq. (19) is 

correct by separating the summations over TJ and s from that over k.    Then the left-hand side 

of the above equation becomes 

U *   1; L  cm;kTjsCkT}S;j^r      L  <    1} (j - k)l  (k - f >!       ' UU' 
k TJS k 

The  expression on the right follows from an argument similar to that given in conjunction with 

Eq.(17).    Keeping k fixed,   a variation in the indices 17   and  s  corresponds to a change in the 

relative arrangement of the k points of the occupied subfigure (s).    If there is to be any contri- 

bution to the sum on the left-hand side,   neither the first nor the second factor can be allowed to 

vanish.    This means that the configuration fft must be such that all points associated with it are 

superposed on occupied points of the (m) figure in the occupation state krjs;   similarly,  the latter, 

considered now as an occupied subfigure,   must have all of its sites coincide with the (m) figure 

in the configuration j£r.    Briefly,  the ICTJS configuration must be intermediate between j£r and f£t. 

This means that we are not allowed to change the k points at random;  / among these must remain 

in a fixed position dictated by the given configuration !ft,  the remaining (k —/) points can assume 

only those positions coincident with the (j — I) remaining occupied sites of the (m) figure in the 

configuration j£r.    In effect,   the summation represents a rearrangement of (k —/) particles 

among (j — t) possible locations;  the number of ways in which this can be accomplished is shown 

on the right of Eq. (20). 

If we next sum over k,  we observe that £ (-1) J~     (j - J)l/(j — k)!(k —/)! vanishes identically 
k 8 

except when j = t   (=k);  for a proof, the reader is referred to standard texts.    Thus, the sum (20) 

generally vanishes;  however,   if j = k = I,  then it reduces to the single term 0l/0! 0!   =1.    So far, 

we have established that the left-hand side of Eq. (19) is equal to ö   • the remaining Kronecker 

deltas are obtained by the argument that when j = k = I,   all figures contain the same number of 

sites and are superposable only if the geometric arrangement of the occupied sites is the same. 

Assertion (18) is thus proved. 

13 



One further property of the matrix is needed 

C "kTjs;j£r 
k7]S 

= 0     for      all j > 0 (2l) 

= 1      for      j = k = 0 

To prove this,   substitute Eq. (18) on the left and take account of Eq. (17).    The resulting sum is 

Y  (    pt-i-k) j! _  y  (   1}(,j-k) (.1-0)1 .     . 
L [  n       ki (j-k):     L \~X)       (k-o): (j-k):    ■ (ZZ) 

k k 
Q 

From the mathematical properties of this type of summation    it follows that Eq. (22) vanishes 

except when j = 0 (=k).    This establishes Eq.(2i). 

VIII.    EQUATIONS CHARACTERIZING EQUILIBRIUM STATES OF SYSTEM 

We have now set the stage for deriving equations that characterize equilibrium states of the 

system under a prescribed set of conditions.    We begin with the basic thermodynamic relation 

F    = E   - TS ,   into which we substitute from Eqs. (9) and (10).    This yields 

Fc - L    I    y<m>   I   *$P$? (<<";> ♦ kTin p.£>]      . (23, 

m=a j£r 

In minimizing F   to find the equilibrium properties of the system, we consider the q.     to be the 

independent variables.    Accordingly,   it follows that 

^Kr}-l^-^U=" (k>0)       ' U4) 

ktj 
krj 

In view of the fact that Eq. (24) must hold,   whatever the variations in the q,   ,   the coefficient of 

every q.     must itself vanish identically.    This leads to the set of conditions 

In 
.       v       (m)   v    Jm)   (m),   (m)  , ,T.    ^(m), 

m=a j|r 

(all k)/ for which k > 0) (25) 

Upon carrying out the indicated differentiation,   one finds 

n 3n*m^ 
» ■ *<   I    ^m'   I   ^ l<g + "in pto) + kT] I&_ U6) 

m=a j£r ^ 

The differentials may then be computed from Eq. (16) as shown below: 

~   (m) x(m) 
\)$r    _ y   r(m)        kns (27) 

^ s Xj4r 

and when this last relation is used in Eq. (26) one obtains 

n 

0 = L    I     y(m)    I   [e(t
m) + kT/np(

£
m) + kT]   V   C(

t
mL^m) u    Jn        t->   l  j£r "j^r J   u     jSrjkrjs \sxß 

m=a j£r s 

(28) 

M 



We now invert the order of the summations.    In so doing,  the third term in the summation of 
Eq.(28) reads 

T y     (m) y   r(m) 
K1   u Akrjs   L   *-#r;kij8     ' 

s j£r 

On applying Eq. (21),   after interchange of the set of indices,   this contribution is found to vanish 

(qQ not being a proper variable for inclusion among the set of distribution numbers).    Eq. (28) 
can thus be put into the final form 

n 
7    Y(m)   y    [y   C(m)     x(m,l[6.

(™) + kTlnp.(
t
m,]=0 (allk>0) (29) L    yn        L   \L  ^j4r;kT]sAk7)s Il  j£r pj£r J 

m=a j£r     s 

The set of equations (29) is known as equilibrium conditions;   observe that these are again 

specified in terms of p.t    .    The normalization and consistency requirements mentioned earlier 
J5r (m) 

furnish further-interrelations between the p.\.     .    On the basis of this total set of equations it is 
possible to solve for the distribution numbers p..      as a function of the parameters  T and e.      . 

DC.   CONCLUDING REMARKS 

The above section concludes the presentation of the main features of the Hijmans-de Boer 
approximation to order-disorder theory.    The applications of this methodology to the treatment 

of gas adsorption have been fully described in several articles in the literature. 
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